Characterization of Markov-bernoulli Geometric Distribution Related to Random Sums

نویسندگان

  • Mahmoud M. Ramadan
  • Mohamed Gharib
  • A. H. Al-Ajmi
چکیده

The Markov-Bernoulli geometric distribution is obtained when a generalization, as a Markov process, of the independent Bernoulli sequence of random variables is introduced by considering the success probability changes with respect to the Markov chain. The resulting model is called the MarkovBernoulli model and it has a wide variety of application fields. In this study, some characterizations are given concerning the Markov-Bernoulli geometric distribution as the distribution of the summation index of independent randomly truncated non-negative integer valued random variables. The achieved results generalize the corresponding characterizations concerning the usual geometric distribution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Poisson Approximation for Sums of Dependent Bernoulli Random Variables

In this paper, we use the Stein-Chen method to determine a non-uniform bound for approximating the distribution of sums of dependent Bernoulli random variables by Poisson distribution. We give two formulas of non-uniform bounds and their applications.

متن کامل

On the bounds in Poisson approximation for independent geometric distributed random variables

‎The main purpose of this note is to establish some bounds in Poisson approximation for row-wise arrays of independent geometric distributed random variables using the operator method‎. ‎Some results related to random sums of independent geometric distributed random variables are also investigated.

متن کامل

On the normal approximation to symmetric binomial distributions

The optimal constant over square root of n error bound in the central limit theorem for distribution functions of sums of independent symmetric Bernoulli random variables is 1/ √ 2πn.

متن کامل

Markov Logarithmic Series Distribution and Estimation of its Parameters by Method of E-Bayesian

In the analysis of Bernoulli's variables, an investigation of the their dependence is of the prime importance. In this paper, the distribution of the Markov logarithmic series is introduced by the execution of the first-order dependence among Bernoulli variables. In order to estimate the parameters of this distribution, maximum likelihood, moment, Bayesian and also a new method which called the...

متن کامل

Characterizations Using Entropies of Records in a Geometric Random Record Model

Suppose that a geometrically distributed number of observations are available from an absolutely continuous distribution function $F$, within this set of observations denote the random number of records by $M$. This is called geometric random record model. In this paper, characterizations of $F$ are provided in terms of the subsequences entropies of records conditional on events ${M geq n}$ or ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014